首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   18篇
  2023年   6篇
  2022年   3篇
  2021年   17篇
  2020年   5篇
  2019年   7篇
  2018年   15篇
  2017年   6篇
  2016年   9篇
  2015年   16篇
  2014年   17篇
  2013年   21篇
  2012年   27篇
  2011年   21篇
  2010年   18篇
  2009年   13篇
  2008年   13篇
  2007年   19篇
  2006年   10篇
  2005年   17篇
  2004年   13篇
  2003年   24篇
  2002年   14篇
  2001年   7篇
  2000年   11篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   4篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1975年   1篇
  1973年   3篇
  1971年   1篇
  1965年   1篇
排序方式: 共有380条查询结果,搜索用时 453 毫秒
11.
Vegetation analysis provides the prerequisites to understand the overall community structure and function of any ecosystem and is a fundamental requirement for the precise evaluation of biodiversity. Although many studies have assessed floristic attributes of specific areas, there are still unexplored regions, as is the case of the mountain region in the Kashmir Himalayas. Current research highlighted the recent findings of the scientific characterization of floristic and ecological aspects on the forest flora found in the Bhimber hills, Pakistan. Floristically, a total of 93 species belonging to 80 genera in 41 families were recorded. The species distribution patterns across the families were disproportionate with half of the species contributed by 8 families and 25 families were monotypic. Based on the floristic analysis, Asteraceae was the largest family with 12% of species followed by Poaceae with (11%) species. PAST software, a multivariate ecological community analysis was used to classify the species similarities and differences among the different habitat types. According to the habitat wise distribution, 21% of species were growing in the natural forest habitat, while 15% of species were dispersed in highly distributed habitats along roadsides and 8% on pedestrians. In terms of functional diversity, the herbaceous growth form was dominant (58%). The biological spectrum revealed therophytes as the dominant life form as it indicates the disturbed habitat vegetation. The phytogeographical analysis revealed that the maximum (69%) species were native, while the minimum (31%) species were exotic. Thus, the study of these functional and habitat diversity patterns can significantly improve our understanding of the ecological aspects of the flora in the geographical location. This information may additionally be useful in devising management plans to ensure sustainable utilization and better management of forest landscapes in this Himalayan region.  相似文献   
12.
BackgroundSusumu Ohno’s idea that modern vertebrates are degenerate polyploids (concept referred as 2R hypothesis) has been the subject of intense debate for past four decades. It was proposed that intra-genomic synteny regions (paralogons) in human genome are remains of ancient polyploidization events that occurred early in the vertebrate history. The quadruplicated paralogon centered on human HOX clusters is taken as evidence that human HOX-bearing chromosomes were structured by two rounds of whole genome duplication (WGD) events.ResultsEvolutionary history of human HOX-bearing chromosomes (chromosomes 2/7/12/17) was evaluated by the phylogenetic analysis of multigene families with triplicated or quadruplicated distribution on these chromosomes. Topology comparison approach categorized the members of 44 families into four distinct co-duplicated groups. Distinct gene families belonging to a particular co-duplicated group, exhibit similar evolutionary history and hence have duplicated simultaneously, whereas genes of two distinct co-duplicated groups do not share their evolutionary history and have not duplicated in concert with each other.ConclusionThe recovery of co-duplicated groups suggests that “ancient segmental duplications and rearrangements” is the most rational model of evolutionary events that have generated the triplicated and quadruplicated paralogy regions seen on the human HOX-bearing chromosomes.  相似文献   
13.
Highlights? PGC-1 induces pigment formation in melanocytes ? PGC-1s activate expression of MITF ? α-MSH induces PGC-1s, which are required for induction of melanogenic genes ? eQTLs in human PGC-1β are associated with tanning ability and melanoma protection  相似文献   
14.
15.
Tomato leaf curl New Delhi virus (ToLCNDV) (Geminiviridae) is an important pathogen that severely affects tomato production. An extensive survey was carried out during 2003–2010 to study the diversity of begomoviruses found in tomato, potato, and cucurbits that showed symptoms of leaf puckering, distortion, curling, vein clearing, and yellow mosaic in various fields in different regions of India. Ten begomovirus isolates were cloned from infected samples and identified as belonging to the species ToLCNDV. A total of 44 % of the samples showed association of betasatellites, with CLCuMuB and LuLDB being the most frequent. The ToLCNDV cloned component DNA A and DNA B were agroinoculated on Nicotiana benthamiana and tomato (Solanum lycopersicum) plants with or without betasatellites, CLCuMuB or LuLDB. The viral genome levels were then monitored by real-time polymerase chain reaction at different time points of disease development. Plants co-inoculated with betasatellites showed enhanced symptom severity in both N. benthamiana and tomato, as well as increases in helper viral DNA A and DNA B levels. The DNA B and betasatellites acted antagonistically to each other, so that the level of DNA B was 16-fold greater in the presence of betasatellites, while accumulation of betasatellites, CLCuMuB and LuLDB, were reduced by 60 % in the presence of DNA B. DNA B-mediated symptoms predominated in CLCuMuB-inoculated plants, whereas betasatellite-mediated leaf abnormalities were prominent in LuLDB-co-inoculated plants. Inoculation with the cloned components will be a good biotechnological tool in resistance breeding program.  相似文献   
16.
17.
Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface properties of carbon to facilitate uniform Li plating. Herein, the correlation between Li plating behavior and the surface characteristics of electrospun porous carbon nanofibers (PCNFs) is systemically elucidated through experiments and theoretical calculations. It is revealed that the neat carbon surface suffers from severe lattice mismatch with Li metal, hindering uniform Li plating. In contrast, open pores created on the PCNF surface serve as active sites for controlled initial nucleation of Li. The introduction of oxygenated functional groups further facilitates the nucleation of Li on PCNFs through the largely reduced nucleation energy barrier. The Li film uniformly deposited on PCNFs enables efficient use of the whole carbon surface, giving rise to enhanced cyclic stability of the electrode. When used as an anode in lithium–sulfur batteries, the modified electrode delivers an excellent energy density of 385 Wh kg?1 after 100 cycles. The fundamental correlation established in this study is universal to all types of carbonaceous materials and sheds new light on the rational design of high‐performance Li metal anodes by controlling the initial Li nucleation.  相似文献   
18.
Optimization of fed-batch feeding parameters was explored for a system with multiple mechanisms of product inactivation. In particular, two separate mechanisms of inactivation were identified for the recombinant tissue-type activator (r-tPA) protein. Dynamic inactivation models were written to describe particular r-tPA glycoform inactivation in the presence and absence of free-glucose. A glucose-independent inactivation mechanism was identified, and inactivation rate constants were found dependent upon the presence of glycosylation of r-tPA at N184. Inactivation rate constants of the glucose-dependent mechanism were not affected by glycosylation at N184. Fed-batch optimization was performed for r-tPA production by CHO cell culture in a stirred-tank reactor with glucose, glutamine and asparagine feed. Feeding profiles in which culture supernatant concentrations of free-glucose and amino acids (combined glutamine and asparagine) were used as control variables, were evaluated for a wide variety of set points. Simulation results for a controlled feeding strategy yielded an optimum at set points of 1.51 g L(-1) glucose and 1.18 g L(-1) of amino acids. Optimization was also performed in absence of metabolite control using fixed feed-flow rates initiate during the exponential growth phase. Fixed feed-flow results displayed a family of optimum solutions along a mass flow rate ratio of 3.15 of glucose to amino acids. Comparison of the two feeding strategies showed a slight advantage of rapid feeding at a fixed flow rate as opposed to metabolite control for a product with multiple mechanisms of inactivation.  相似文献   
19.
By comparing changes in enzyme activity with changes in spectral features for stem bromelain (EC.3.4.22.32) in the absence and presence of urea, Guanidine hydrochloride and ethanol; four intermediate states could be identified: two activity-enhanced state obtained in the presence of 5 M urea and 2 M GnHCl, termed X and X', respectively, and a third, similarly active state closely resembling the native protein in the presence of 8-9 M urea, termed Y. The enhanced activity of these states is due to local conformational changes accompanied by increased dynamics in the active site. Further, the enzyme does not lose its activity after substantial tertiary structure changes in 8-9 M urea (Y state), suggesting that active site containing domain is more resistant to chemical denaturation than the other structural domain. This makes stem bromelain and in general cysteine proteases an exception to the hypothesis that active site is the most labile part of enzyme.  相似文献   
20.
Globally, riparian zones along river banks are widely recognized for their vital role in water regulation and conservation of biodiversity. Here, we specifically investigated the floristic and functional diversity of the vegetation of the riparian zones of protected forests in Kashmir Himalaya, India. A random sampling method was used for site selection while a transect method was used for data collection. Data obtained from the field was subjected to taxonomic and functional classification. Floristic analysis revealed a total of 78 species belonging to 68 genera in 40 families, suggesting an unequal distribution of species among families. Nine families contributed half of the species: Rosaceae was the dominant family with nine (12%) species followed by Asteraceae with eight species (10%), while 23 families were monotypic. In terms of functional trait diversity, herbaceous and perennial taxa dominated, and the biological spectrum showed a dominance of the therophytic life form, indicative of disturbed vegetation. The phenological spectrum revealed that the maximum flowering periods starts in March and extends into May, in which a total of 61% of the species were observed to flower. The leading leaf size spectra were mesophyll with 35%, followed by microphyll (31%). Most (64%) of the species had a simple leaf lamina type. The results of the present study serve as a means to evaluate best management practices, assess restoration and mitigation projects, prioritize riparian related resource management decisions, and establish aquatic life use standards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号